Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
A different mix of fuels with enhanced properties could overcome some of the major barriers to making fusion a more practical energy source.
The proposed approach would still use deuterium and tritium, which are generally accepted as the most promising pair of fuels for fusion energy production. However, the quantum properties of the fuel would be adjusted for peak efficiency using an existing process known as spin polarization. In addition to spin polarizing half the fuels, the percentage of deuterium would be increased from the usual amount of roughly 60% or more.
Models created by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) showed the approach allowed tritium to burn more efficiently without sacrificing fusion power. This could dramatically reduce the amount of tritium needed to start up and maintain fusion reactions, leading to more compact and affordable fusion systems.
The approach could burn tritium as much as 10 times more efficiently. The research also underscores PPPL's role at the forefront of fusion innovation, particularly when it involves a system such as the one studied in Parisi's research, where gasses are superheated to create a plasma(Link is external) confined by magnetic fields into a shape similar to a cored apple.